SMITHSONIAN MISCELLANEOUS COLLECTIONS

 VOLUME 101, NUMBER 11
AMPHIPOD CRUSTACEANS COLLECTED ON THE PRESIDENTIAL CRUISE OF 1938

BY
CLARENCE R. SHOEMAKER
Assistant Curator, Division of Marine Invertebrates, U. S. National Museum

(Publication 3677)

GITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
MARCH 5, $19+2$

さbe Eord ©aftimore @reess BALTIMORE, MD., U. S. A.

AMPHIPOD CRUSTACEANS COLLECTED ON THE PRESIDENTIAL CRUISE OF 1938

By CLARENCE R. SHOEMAKER

Assistant Curator, Division of Marine Invertebrates, U. S. National Muscunn
The Presidential Cruise on the U.S.S. Houston to the eastern tropical Pacific and the Caribbean Sea in 1938 obtained a most interesting collection of Amphipoda through the indefatigable labors of Dr. Waldo L. Schmitt, the naturalist of the expedition, who had the most enthusiastic assistance of the ship's personnel thronghout the cruise. The bulk of the material was obtained on the west coast of Lower California. At Magdalena Bay, Lower California, amphipods were found to be exceedingly abundant. When water was added to a half tubful of sand brought up with a boat dredge at station No. 3-38 an amazingly thick "scum" of amphipods rose to the surface. With a fine sieve a solid quart of these small crustaceans was skimmed off with little difficulty. The bulk of this material consisted of a new species, Ncomcgamphopus rooscvelti, which required a new genus for its reception. A total of 27 different species, belonging to 24 genera, appeared in this haul.

Other species were taken at Clipperton Island between 600 and joo miles off the west coast of Mexico, at Cocos Island, and at the Galápagos Islands, which lie across the Equator. The discovery of Orchestia marquesana at Clipperton Island is of more than passing interest, as that locality is far to the northeast of its previously known occurrence. At first I thought a new but related species was involved, but soon found that the differences were due to the secondary sex characters found in the male. Dr. Stephensen, who described the species, possessed only females; both sexes are represented in the collection from the Presidential Cruise.

After passing through the Panama Canal, the Houston made a brief stop at Old Providence Island off the east coast of Nicaragua, where three species were obtained.

The collection comprises 27 genera, 36 species, and one variety. Included are io new species and one new variety, as follows:

> Orchomenella magdalencnsis, n. sp.
> Gitanopsis pusilloides, n. sp.
> Microdeutopus schmitti, n. sp.
Photis spinicarpa, n. sp.Photis brevipes, n. sp.Eurystheus spinosus, n. sp.Podoccropsis dubia, n. sp.Neomegamphopus rooscevelti, 11. sp.
Parajassa angularis, n. sp.
Microjassa macrocoxa, n. sp.
Eurysthens tenuicormis var. lobata, n. var.
Following is a list of stations with species encountered :
Station No. 1-38. Cedros Island, off west coast of Lower California.Shore collecting, both north and south of cannery, east side ofisland. Amphipods from under drifted kelp on gravel beach tonorth, July 17, 1938.
No. of specimensOrchestia traskiana Stimpson..................................... . Many
Station No. 2-38. Cedros Island, off west coast of Lower California. Bottom sample in 24-25 fathoms, about one-fourth of the way from shore to anchorage, July 17, 1938.
No. of specimens
Batca catharincusis Müller. I
Station No. 3-38. Magdalena Bay, Lower California, inside northern point of entrance to bay, between Belcher Point and anchorage, IO-I 5 fathoms ; sandy, weedy bottom, July i8, 1938.
Orchonenella magdalcnensis, n. sp 6
Aruga dissimilis (Stout) 2
Ampclisca schellenbergi Shoemaker 20
Platyischnopus gracilipes Schellenberg I
Gitanopsis pusilloides, n. sp 34
Batea catharincusis Müller Many
Maera sinile Stout 2
Elasmopus rapax Costa 5
Orchestia traskiana Stimpson I
Hyale frequens (Stout) 15
Lembos (Bemlos) macromanus (Shoemaker) Many
Microdeutopus schmitti, n. sp. II
Photis spinicarpa, n. sp. 16
Photis brevipes, n. sp 30
Eurysthcus temuicornis (Holmes) I
Eurystlucus tenuicomis var. lobata, n. var 25
Eurysthcus spinosus, n. sp. II
Neomegamphopus roosevelti, n. sp. Many
Cheralia aviculae Walker. 5
Ampithoe plumulosus Shomaker 15
Ampithoe ramondi (Audouin) 16
Jassa falcata (Montagu) 3
Parajassa angularis, n. sp. 3
Microjassa macrocoxa, n. sp. 30
Ericthonius brasilicnsis (Dana) Many
Cerapus tubularis Say 2
Podocerus cristatus (Thomson) 12
Caprella scaura Templeton. Many
Station No. 4-38. Magdalena Bay, Lower California; filamentousgreen algae from deeper end of preceding dredge hanls, July i8,1938.
Batca catharinensis Muiller. 30
Hyale frequens (Stout) 3
Lembos (Bemlos) macromanus (Shoemaker) Many
Microdeutopns schmitti, n. sp... I
Photis brevipes, n . sp I
Eurysthcus temuicornis (Holmes) 2
Eurystheus tenuicornis var. lobata, n. var I
Neomegamphopus roosevelti, n. sp. Many
Ampithoe plumulosus Shoemaker I
Microjassa macrocosa, n. sp I
Podocerus cristatus (Thomson) I
Caprella scaura (Templeton) Many
Station No. 5-38. Cape San Lucas, Lower California. Off PuntaGorda, off rocky shore to west and San Jose del Cabo Bay,dredged in 6-10 fathoms, July 19, 1938.
Lembos (Bcmlos) macromanns (Shoemaker) I
Microdeutopus schmitti, n. sp. I
Neomegamphopus roosevclti, n. sp. 6
Ampithoe plumulosus Shoemaker 4
Cerapus tubularis Say 2
Caprella scaura (Templeton) 4

Station No. 9-38. Clipperton Island. Shore collecting on rocks to south of landing place, July 21, 1938.
Elasmopus rapax Costa 2
Elasmopus spinidactylus Chevreux 15
Elasmopus gracilis Schellenberg 3
Ampithoe plumulosa Shoemaker I

Station No. 14-38. Clipperton Island. Debris from two boobies' nests back from landing place, July 21, 1938.
No. of specimens
Orchestia marquesana Stephensen Many

Station No. 15-38. Sulivan Bay, James Island, Galápagos Islands. Shore and tide-pool collecting, $3: 30$ to $5: 00$ p.m., tide beginning to run out, July 24, 1938.

No. of specimens
Ampelisca lobata Holmes. .
Colomastix pusilla Grube.. . . .
Elasmopus rapar Costa... If
Station No. I6-38. Narborongh Island, Galápagos Islands. Shore collecting, July 25, 1938.

No. of specimens
Hyale hareaicnsis (Dana) . 6
Station No. 22-38. At anchorage off Gardner Bay, Hood Island, Galápagos Islands. Off gangway, dip net, 11 :00 p.m., July 27, 1938.

No. of specimens
Myperia bengalensis (Giles) . I
Station No. 28-38. Chatham Bay, Cocos Island. Bottom sample, August 3, 1938.

No. of specimens
Podoccropsis dubia, n. sp.. 23
Station No. 30-38. Old Providence Island, Caribbean Sea. Shore, reef, and tide-pool collecting, August 6, 1938.

No. of specimens
Ampithoe ramondi (Audouin)
2
Station. Old Providence Island, Caribbean Sea, August 6, 1938.
No. of specimens
Colomastix pusilla Grube. I
Elasmopus brasiliensis (Dana)................................. . . . I
GAMMARIDEA
LYSIANASSIDAE
ORCHOMENELLA MAGDALENENSIS, new species

Figure I

Station 3. Magdalena Bay, Lower California, 6 specimens.
Female.-Head, lateral lobes produced, narrowing distally with apex narrowly rounding. Eye large, oval, and with little color. Antenna I, flagellum composed of five joints; accessory flagellum of two joints. Antenna 2 a little longer than I , third joint as long as fourth plus half of the fifth; fifth joint a little over half as long as the fourth ; flagellum nearly as long as fourth and fifth joints together and composed of six joints.

The epistome projects considerably beyond the upper lip, and is triangular with narrowly rounding apex. Mandible with molar rather prominent ; cutting edge with a tooth at outer corner ; three spines in

Fig. 1.-Orchomenclla magdalenensis, new species. Femaie, a, entire anmal: b, antenna $1 ; c$, antenna $2 ; d$, head showing epistome and upper lip; c, mandible ; f, maxilla $1 ; g$, maxilla $2 ; h$, maxillipeds; i, outer plate of maxilliped: i, gnathopod $1 ; k$, gnathopod $2 ; i$, hind corner of coxal plate $3 ; m$, uropod $3 ; n$, telson.
spine row; palp with first joint nearly two-thirds as long as second and longer than third; second joint nearly twice as long as third. Maxilla I , inner plate about half as long as outer, narrow and bearing
two plumose setae apically; onter plate bearing II serrate spine teeth; palp armed distally with 5 short, blunt spine teeth and a plamose seta. Maxilla 2, inner plate shorter and narrower than outer. Maxillipeds, inner plate reaching to the middle of the outer and armed distally with three blunt teeth; outer plate reaching nearly to the middle of the third joint of palp, apex and npper part of inner margin armed with short blunt teeth, onter surface bearing an oblique row of short spines which ends in two stout spines on inner margin ; palp short and slender, third joint nearly as long as second; fourth joint over half the length of the third, chirved and bearing a minnte nail.

Coxal plates 1 to 4 much deeper than their segments ; first coxal plate noticeably expanded below; second and third with sides nearly parallel ; fourth deeply excavate with lower hind lobe prominent and obliquely truncate. Gnathopod i slender; second joint as long as the third, fourth, fifth, and sixth together ; fifth joint a little wider than, but equal in length to, the sixth; sixth joint with margins parallel and a little over twice as long as wide; palm transverse ; seventl joint fitting palm and bearing a tooth on inner margin. Gnathopod 2 very slender and much longer than I; second joint about twice the length of the third which is equal in length to the fifth ; sixth joint half the length of the fifth; seventh joint very short and weak.

Peraeopods I and 2 slender and subequal in length. Peracopods 3 to 5 with second joints considerably expanded, that of 3 wider than long; fourth joints with lower hind comer somewhat produced. Metasome segment I with lower margin romnding; segments 2 and 3 with lower hind corner about right-angled. Urosome segment I proHuced backward dorsally into a prominent tooth. Uropod I projecting back abont as far as 3 . Uropod 3 with upper edge of peduncle produced into a thin convex lobe; outer ramus bearing only two short spines which are at the base of the second joint ; inner ramus bearing three short spines on outer margin. Telson long and narrow, cleft almost to its base, with each lobe bearing an apical spine and a spine and two plumose setules on upper surface. Length, from front of head to end of uropod 3 , about 6 mm .

Type locality.-Magdalena Bay, Lower California, dredged in IO-I5 fathoms inside northern point of entrance to bay, July i4. 1938. Holotype, female, U.S.N.M. No. 79370.

This species conforms to the genus Orchomenclla except in the proportions of the joints of the mandibular palp, and in the proportions of the joints of the pedincle of the second antenna. So far as I an aware, in no other species is the first joint of the mandibular palp
longer than the third, or the third joint of the peduncle of antenna 2 longer than either the fourth or fifth. I am, nevertheless, placing the species in Orchomenella, owing to its general conformity with that genus, rather than creating a new genus for it.

ARUGA DISSIMILIS (Stout)

Figure 2

Nannony.x dissimilis Stout, 1913, Zool. Jahrb., Abt. Syst., vol. 3ł, p. 638.
Station 3. Magdalena Bay, Lower California, 2 specimens.
This species was described by Vimnie Ream Stout from Laguna Reach, southern California. Although I have seen very few specimens of this species, she says,

Perlaps the most common of the dwellers of the kelp from deep water was the species, Namnony:x dissimilis, 11. sp., of which there were hundreds in one holdfast. Besides the fact of their numbers, these forms were rather conspicuous in the bright orange eggs of the females.

These two specimens constitute the second record of the occurrence of this species, and extend the range considerably to the south.

I have transferred this species to the genus Aruga, created by S. J. Holmes in igo8 to receive his California species A. oculata, as the mouth parts and appendage characters of A. dissimilis agree with those of A. oculata. I am, however, of the opinion that the genus Aruga may become a synonym of the genus L ysianopsis created by Holmes in 1905 for the reception of L. alba from southern New England, as the characters of the two genera appear to be much the same. The mouth parts of these two genera agree, including the first maxilliped, the inner plate of which bears two terminal plumose setae.

AMPELISCIDAE

AMPELISCA LOBATA Holmes

Ampelisca lobata Holmes, 1908, Proc. U. S. Nat. Mus., vol. 35, No. 1654, p. 517 , fig. 25.
Station 15. Sulivan Bay, James Island, Galápagos Islands, I specimen.

This species was described by S. J. Holmes from a single specimen which was taken at Albatross station 4420, off San Nicolas Island, southern California. There are specimens of this species in the National Museum collection from Catalina Island, Corona Del Mar, and Monterey Bay, Calif., and one specimen from Vancouver Island taken north of Nanaimo. The present record from the Galápagos Islands extends the range about 3,000 miles southward.

Fig. 2.-Aruga dissimilis (Stout). Female, a, head and antennae; b, maxilla $2 ; c$, maxillipeds; d, end of inner plate of maxilliped showing the low teeth; c, gnathopod I; f, gnathopod 2; g, peracopod $2 ; h$, peraeopod $3 ; i$, peraeopod 4 : j, peraeopod $5 ; k$, second and third metasome segments; l, uropod $2 ; m$, uropord 3 ; n, telson.

AMPELISCA SCHELLENBERGI Shoemaker

Ampelisca schellenbergi Shoemaker, 1933, Amer. Mus. Nov., No. 598, p. 3, figs. I, 2.

Station 3. Magdalena Bay, Lower California, 20 specimens.
This species was described from specimens taken by the Albatross at stations 2369-2374 in the Gulf of Mexico. There are also specimens in the National Museum collection from the west coast of Florida, the Dry Tortugas, and from off Yucatan. The present specimens are the first recorded from the west coast of America.

HAUSTORIIDAE

PLATYISCHNOPUS GRACLLIPES Schellenberg

Platyischnopus gracilipes Schellenberg, i931, Gammariden und Caprelliden, Swedish Antarctic Exped., 1901-1903, rol. 2, No. 6, p. 63, fig. 33.

Station 3. Magdalena Bay, Lower California, I specimen.
This species was recorded by Schellenberg from Valparaiso, Chile, and Rio de Janeiro, Brazil. It is represented in the National Museum collection by a specimen taken by Dr. W. L. Schmitt at La Libertad, Ecuador, when traveling under the Walter Rathbone Bacon scholarship of the Smithsonian Institution in 1934, and by a specimen measuring 7 mm . taken off La Jolla, Calif.

AMPHILOCHIDAE

GITANOPSIS PUSILLOIDES, new species

Figure 3
Station 3. Magdalena Bay, Lower California, 34 specimens.
Female.-Head, rostrum rather short, not strongly curved or acute ; lateral corners evenly rounding ; eyes dark and rather prominent with the peripheral elements usually colorless. Antenna I a little shorter than 2 ; flagellum about half the length of the peduncle and composed of four or five joints. Antenna 2 with flagellum less than half the length of the peduncle and composed of six or seven joints. Upper lip unsymmetrically bilobed.

Mandible, molar very prominent, with what appears to be a chisellike tooth at the front corner; cutting edge with many teeth; spine row with II serrulate spines; palp with third joint equal in length to the second. Left mandible with broad accessory plate having a finely toothed cutting edge. Maxilla I, inner plate with one spinule; outer plate with seven spine teeth; palp broad, apex armed with two chisellike teeth and two spinules. Maxilla 2, inner plate a little broader but

Fig. 3.-Gitanopsis pusilloides, new species. Female, a, head; b, mandible; c, maxilla $1 ; d$, maxilla $2 ; e$, lower $\operatorname{lip} ; f$, gnathopod $\mathrm{I} ; g$, gnathopod $2 ; h$, peraeopod $2 ; i$, peraeopod $3 ; j$, uropod $3 ; k$, telson.
slightly shorter than outer, each plate armed with four spines. Lower lip with suggestion of inner lobes; outer lobes narrowing distally, apex forming a small lobe below which is a depression carrying a short blunt spinule; lateral lobes rather prominent and apically blunt.

Gnathopods I and 2 very much alike. Gnathopod I, fifth joint with lower lobe rather short, extending a very short distance along the hind margin of the sixth, bearing three apical spinules but no marginal setae or spinules ; sixth joint broadest distally, palm transverse, defined by a small tooth and a spine, slightly convex and minutely denticulate throughout ; seventh joint fitting palm, smooth on inner margin except for a tooth near the apex. Coxal plate I very little deeper than the first joint of the gnathopod and about half the depth of coxal plate 2 , sides nearly parallel and lower corners evenly rounding. Gnathopod 2 larger than I but otherwise the same.

Peraeopods all very slender. Peraeopods I and 2 alike but 2 a little the longer; fourth joint with lower front angle produced; seventh joint rather long, slender and curved and bearing no nail or setae. Coxal plates 2, 3, and 4 of about equal depth. Peraeopod 3 longer than 2 ; depth of coxal plate cqual to the length of the second joint. Peraeopod 4 longer than 3 but about equal in length to 5 . The metasome segments are as figured by Sars (pl. 76, fig. 2) for Gitanopsis bispinosa, but without the dorsal teeth.

Uropod I reaching back as far as uropod 3, outer ramus scarcely shorter than inner. Uropod 2 reaching nearly to the middle of the rami of uropod I , outer ramus considerably shorter than inner. Uropod 3 , outer ramus shorter than imer, which is a little shorter than the peduncle. Telson reaching to about the middle of the peduncle of uropod 3 , sides convex and converging to the narrow, evenly rounding apex. Length of female 3 mm .

Type locality.-Magdalena Bay, Lower California, dredged in 10-I5 fathoms inside northern point of entrance to bay, July I4, 1938. Holotype, female, U.S.N.M. No. 79373.

Though many specimens of this species were taken, all appear to be females. G. pusilloides is probably most closely related to G. pusilla Barnard. There are, however, several distinguishing characters. The outer plate of maxilla I carries 7 spine teeth, while in G. pusilla there are 14. The imner plate of maxilla 2 is armed with 4 spine teeth, but in G. pusilla there are said to be 10 on apical and inner margins. The inner ramus of uropod 3 is about four-fifths the length of the peduncle. Barnard (i916, p. 144) says of G. pusilla, "Third uropod, outer ramus shorter than inner, which is a little shorter than peduncle," but in his figure of the third uropod the inner ramus is scarcely half the length of the peduncle, which proportion I suspect is correct.

COLOMASTIGIDAE

COLOMASTIX PUSILLA Grube

C'olomasti.x pusilla Grube, I864, Arch. Naturg., Jahrg. 30, vol. 1, p. 206, pl. 5. fig. $2 a-b$.
Station 15. Sulivan Bay, Jancs Island, Galápagos Islands, I specimen, 9 .

Station. Old Providence Island, Caribbean Sea, i specimen, 아.
This is a widely distributed species and has been recorded from the Mediterranean, North Atlantic, Ceylon, South Africa, and Red Sea. The present records are the first for the Caribbean Sea and the Galápagos Islands.

BATEIDAE

BATEA CATHARINENSIS Müller

Batca catharinensis Müller, 1865, Ann. Mag. Nat. Hist., ser. 3, vol. 15, p. 276, pl. 10.
Batea secunda Holmes, 1905, Bull. Bur. Fish. for 1904, vol. 24, p. 499, fig.
Batea catharinensis Shoemaker, i926, Proc. U. S. Nat. Mus., vol. 68, No. 2626, art. 25, p. 2, figs. 1-4.

Station 2. Cedros Island, off Lower California, I specimen, q.
Station 3. Magdalena Bay, Lower California, many specimens.
Station 4. Magdalena Bay, Lower California, 30 specimens.
This species extends from Brazil northward to southern New England. The present record is the first for the west coast of America.

GAMMARIDAE

MAERA SIMILE Stout

Macia simile Stout, 1913, Zool. Jahrb., Abt. Syst., vol. 34, p. 644.
Station 3. Magdalena Bay, Lower California, 2 specimens.
This species was described from specimens found in a large kelp holdfast which floated in to the breaker line from deep water at Laguna Bcach, southern California.

The present record constitutes the second of the occurrence of this species.

ELASMOPUS RAPAX Costa

Elasmopus rapax Costa, 1853, Rend. Soc. Reale Barbonica, Acad. Sci., n. s., vol. 2, p. 175 ; Sars, 1895 , Crustacea of Norway, Amphipoda, vol. I, p. 521, pl. 183.
Station 3. Magdalena Bay, Lower California, 5 specimens. Station 9. Clipperton Island, 2 specimens.

Station 15 . Sulivan Bay, James Island, Galápagos Islands, 14 specimens.

Elasmopus rapax is a cosmopolitan inhabitant of the warm and temperate seas but has not heretofore been recorded from the west coast of America.

ELASMOPUS SPINIDACTYLUS Chevreux

Elasmopus spinidactylus Chevretx, 1907, Mem. Soc. Zool. France, vol. 20, No. 4, p. 486, figs. 9, 10.

Station 9. Clipperton Island, is specimens.
This species was described by Chevreux from the Gambier Islands, and has since been recorded from the Tuamotu and Gilbert Islands. The present record from Clipperton Island extends the range of this species greatly to the northeast.

ELASMOPUS BRASILIENSIS (Dana)

Gammarns brasilicnsis Dana, 1853 and 1855 , U. S. Explor. Exped., vol. 14, pt. 2. Amphipoda, p. 956 , pl. 65 , fig. io.
Station. Old Providence Island, Caribbean Sea, 1 specimen.
Dana described this species from Rio de Janeiro, and there are specimens in the National Museum collection from the Gulf of Mexico and Florida. The present record is the first for the Caribbean Sea.

ELASMOPUS GRACILIS Schellenberg

Elusmopus gracilis Schellenberg, i938, Kungl. Svenska Vetensk. Akad. Handl., Tredje ser., vol. 16, No. 6, p. 59, fig. 31.
Station 9. Clipperton Island, 3 specimens, $0^{\text {T}}$.
This species was described from the Fiji Islands and Ellice Islands. The present specimens are about the size of the original specimens and they agree with the figures given by Schellenberg. This record from Clipperton Island is the second of the occurrence of this species.

TALITRIDAE

ORCHESTIA TRASKIANA Stimpson

Orchestia traskiana Stimpson, 1857, Proc. California Acad. Nat. Sci., vol. i, p. 90.

Station I. Cedros Island, off Lower California, many specimens.
Station 3. Magdalena Bay, Lower California, I specimen, ő.
This species is common on the west coast of the United States but has not heretofore been noted from Lower California.

ORCHESTIA MARQUESANA Stephensen

Figures 4,5

Orchestia marquesuna Stephensen, 1935, B. P. Bishop Mus., Bull. 142, art. 3, p. 32, figs. 8-10.

Station I4. Clipperton Island, found among debris under two boobies' nests, July 2I, I938, many specimens.

Dr. Stephensen when describing this species had only the female, but both sexes occur in the specimens from Clipperton Island. I am therefore describing and figuring the male.

Malc.-Eyes rather large, black. Antenna I reaching slightly beyond the end of the fourth joint of peduncle of antenna 2, flagrellum slightly shorter than the peduncle. Antenna 2, flagellum much longer than peduncle. Mouth parts normal and as shown in the accompany-ing figures. Maxilla 1 , inner plate with two plumose setae; outer plate with nine spine teeth. Maxillipeds, palp with small scalelike fourth joint which does not project beyond the apex of the third joint. Coxal plate I entirely hidden behind coxal plate 2 , which is a little broader than deep and evenly rounding below. Coxal plates + and 5 of equal depth. Coxal plate 6 with deep hind lobe.

Gnathopod I, fifth joint with a prominent hind lobe; sixth joint with the distal hind corner produced beyond the palm into a small lobe ; palm transverse. Gnathopod 2, sixth joint robust ; palm occupying nearly half the hind margin of joint and continuous with it: seventh joint a little longer than palm. Peraeopod 3 equal in length to peraeopod 2 ; second joint a little longer than wide and with a shallow lower hind lobe. Peraeopod 4, second joint considerably longer than wide and not greatly expanded. Peraeopod 5 equal in length to 4 , second joint a very little longer than wide and having an almost square appearance, few serrations and spinules on hind margin.

Metasome segments 2 and 3 with lower hind corners slightly produced. The posterior lateral margins of metasome segments 1 to 3 bearing two or three shallow serrations. Pleopods with rami considerably reduced. Uropods I and 2 with rather few spines, the distal spines of uropod I being the longest. Uropod 3, ramus shorter than peduncle and bearing two small lateral spines and a group of spines apically ; peduncle with three lateral spines. Telson a little longer than wide, cleft for about one-third its length with the lobes separated, a group of three lateral spines about one-third the distance from the end, two lateral spines near the apex, and two apical spines on each lobe. Length of largest specimens about I3 111 m .

In the figure of the first gnathopod of the female given by Stephensen the paln appears to be slightly convex and slightly oblique. In the Clipperton Island specimens the palm is slightly concave, giving the

Fig. 4.-Orchestia marquesana Stephensen. Male, a, front end of animal ; 1, hind end of animal ; c, maxilla 1 ; d, maxillipeds ; c, f, g, pleopods 1,2 , and 3 ; h, hind margin metasome segment $3 ; i$, telson.
palmar angle a lobular appearance. In Stephensen's figures the hind margins of the metasome segments lear many more serrations, the eyes appear smaller, and the pleopods are more reduced than in the

Fig. 5.-Orchestia marquesana Stephensen. Female, a, gnathopod i. Male, b, sixth and seventh joints of gnathopod $1 ; c, d, c, f$, peraeopods $2,3,4$, and 5 .
present specimens. I believe that in spite of these differences the Clipperton Island specimens belong to the species described from the Marquesas Islands and are O. marquesana.

These specimens were found in the debris under two boobies' nests, which were back from the beach well over 100 yards in a completely dry location, but the layer of debris in which the animals were found was moist.

The genera Orchestia and Parorchestia do not possess any characters by which they can be justly separated. Stebbing (I906, p. 530) says of Orchestia, "The maxillipeds seem sometimes to have an obscure rudiment of the fourth joint of the palp, and the front lobe of side-plate 5 may be as deep as side-plate 4." Of the genus Parorchestia he says (igo6, p. 557), "Like Orchestia, but maxillipeds with fourtl joint of palp distinct, though very small, conical, and having a spine on the truncate apex."

Chilton (1909, p. 636-637), after quoting Stebbing's definition of Parorchestia, says,
In Orchestia, however, the maxillipeds may, as Stebbing himself states, have an obscure rudiment of the fourth joint of the palp, and the presence or absence of this joint is therefore hardly sufficient to distinguish the two genera. At the same time, it is perhaps convenient to group the truly terrestrial species under a separate genus, and the species that I am acquainted with can, as a rule, be distinguished from species of Orchestia living on the sea-shore by the greater abundance of long slender spine-like setae on the antennae and the peraeopods, and by the more reduced condition of the pleopoda, especially the third pair.

Dr. Stephensen (1935, p. 32), in describing Orchestia marquesana, places it in Orchestia, though he states that the palp of the maxillipeds has a minute, scalelike fourth joint. It would seem then that there are no characters sufficiently distinct to warrant the retention of the two genera, and I therefore regard Parorchestia as synonymons with Orchestia. The characters which have been used to distinguish the two genera differ only in degree, not in kind.

HYALE FREQUENS (Stout)

Allorchestes frequens Stout, 1913, Zool. Jahrb., Abt. Syst., vol. 34, p. 650.
Station 3. Magdalena Bay, Lower California , 15 specimens.
Station 4. Magdalena Bay, Lower California, 3 specimens.
Stout's specimens were taken at Laguna Beach, southern California, from tufts of coralline algae and from Phyllospadix between tides and also from tangles set below tides. The present specimens from Magdalena Bay were also found living among algae in Io-I 5 fathoms, and they constitute the second record of the occurrence of this species.

HYALE HAWAIENSIS (Dana)

Allorchestes hazeaiensis Dana, 1853 and 1855, U. S. Explor. Exped., vol. 14, pt. 2, Amphipoda, p. 900, pl. 61, fig. 5.
Hyale brevipes Chevreux, 190i, Mem. Soc. Zool. France, vol. 14, p. 400, figs. 15-18; Shoemaker, 1933, Amer. Mus. Nov., No. 59 S, p. 18, figs. 10-it.
Hyale hazeaiensis Schellenberg, 1938, Kungl. Svenska Vetensk. Akad. Handl., Tredje ser., vol. i6, No. 6, p. 66, fig. 34.

Station i6. Narborough Island, Galápagos̉ Islands, 6 specimens.
Dana described this species from the Hawaiian Islands, and it has been pointed out by Schellenberg that Chevreux's Hyale brevipes described from the Seychelles Islands is a synonym of it. Hyale stolzmani, described by Wrzesniowski from the coast of Peru, I believe is also a synonym of H. haze'aicnsis. H. hazeaiensis is represented in the National Museum collection by specimens from Peru and the west coast of America as far north as California.

Hyale hazvaicnsis appears to be a cosmopolitan species in the warm and temperate seas.

AORIDAE

LEMBOS (BEMLOS) MACROMANUS (Shoemaker)

Bemlos macromamus Shoemaker, 1925, Bull. Amer. Mus. Nat. Hist., vol. 52, art. 2, p. 36, figs. io-i3.
Lembos (Bemlos) macromanus Schellenberg, 1938, Kungl. Svenska. Vetensk. Akad. Handl., Tredje ser., vol. 16, No. 6, p. 79.

Station 3. Magdalena Bay, Lower California, numerous specimens. Station 4. Magdalena Bay, Lower California, numerous specimens.
Station 5. Cape San Lucas, Lower California, I specimen.
This species was described from Lower California without a definite locality, but, as indicated by specimens recently presented to the National Museum, it appears to be a common species on the coast of that peninsula. The single male recorded by Schellenberg was from the Philippine Islands, which bespeaks a wide range for the species.

MICRODEUTOPUS SCHMITTI, new species ${ }^{1}$

Figure 6
Station 3. Magdalena Bay, Lower California, 1 I specimens.
Station 4. Magdalena Bay, Lower California, I specimen.
Station 5. Cape San Lucas, Lower California, I specimen.
Male.-Head, side lobes rounding. Eye rather small, black, and composed of a few elements. Antema i a little longer than 2, first

[^0]

Fig. 6.-Microdeutopus schmitti, new species. Male, a, front end of animal ; b, hind end of animal (on smaller scale than front end) ; c, mandible; d, maxilla I; e, maxilla $2 ; f$, maxilliped; g, peraeopod $3 ; h$, peraeopod $4 ; i$, peraeopod $5 ; j$. uropod $\mathrm{I} ; k$, uropod $2 ; l, m$, uropod 3 , from below and above; n, telson. Female, o, gnathopod I; p, gnathopod 2.
and second peduncular joints about equal in length ; third joint less than half the length of the second; flagellum about equal in length to the peduncle and composed of 9 or io joints; accessory flagellum consisting of 2 long and I very short joint. Several of the terminal flagellum joints carry long slender cylindrical sense organs. Antemna 2, fifth joint a little longer than fourth; flagellum about twothirds the length of the fourth joint and composed of one long joint and three short joints, the three short joints each bearing a curved spine.

Mandible, molar prominent and bearing at its base near the insertion of the palp a prominent cone-shaped process; accessory plate narrow ; six spines in spine row; second joint of palp shorter than third. Maxilla I, inner plate small and bearing I long plumose seta; outer plate armed with io spine teeth; palp rounded distally and bearing 5 spine teeth and 4 setae. Maxilla 2, normal and much as figured by Sars for M. anomalus (pl .19 r , fig. m^{2}), the diagonal row of setae on inner plate reaching nearly to the outer margin. Maxillipeds, inner plate bearing 3 teeth and the usual plumose setae; outer plate reaching nearly to the end of the second palp joint and armed on inner margin with to teeth; fourth joint of palp bearing nail at the base of which are several setules.

Gnathopod I, strong and robust, second joint thick with the front margin excavate for the reception of the fifth joint when the limb is folded; fifth joint strongly developed with the hind margin produced distally into a forward-pointing tooth, back of which are two smaller teeth ; sixth joint bearing two teeth on lower margin; seventh joint shorter than sixth, curved, with inner margin armed with five small teeth. Gnathopod 2, second joint strong, hind margin convex and the front margin concave ; fifth joint longer and wider than sixth ; sixth narrowing distally, palm transverse with evenly rounding defining angle and armed with exceedingly fine denticulations throughout; seventh joint overlapping palm and armed on inner margin with three small teeth; fourth, fifth, and sixth joints densely setose on their imner surfaces.

Peraeopods I and 2 very much alike, but I a little the stouter and longer ; the lower inside surface of fourth joints densely clothed with long forward-pointing setae. Peracopod 3 about equal in length to 2 . Peraeopod 4 longer than 3 , but shorter than 5 . Coxal plate I produced forward to an evenly rounding, narrow, lower corner, lower margin nearly straight ; coxal plate 2 deeper than I and deeper than the five following.

Metasome segments with lower hind corner narrowly rounding, segment 3 the longest. Uropod i, peduncle about equal in length to outer ramus, which is a little shorter than inner; peduncle produced distally to a long upward-curved tooth. Uropod 2 , peduncle shorter than outer ramus, which is shorter than the imner ; peduncle produced distally into a long upward-curved tooth. Uropod 3 with outer ramus perhaps a little longer than inner. Telson reaching to end of peduncle of uropod 3 , tumid, depressed along the central longitudinal dorsal surface, distal corners armed with three spinules and a seta, lateral margins slightly convex and converging toward the incised apex. Length of male 5 mm .

Female.-Much like the male except in gnathopods 1 and 2. Gnathopod I, fiftl joint as long as, but wider than, the sixth, lower front margin produced to a small tooth : sixth joint with front and hind margins about parallel, palm slightly oblique, defined by a broadly rounding curve at the base of which is a stout spine, palm minutely denticulate throughout ; seventh joint overlapping palm and armed on inside margin with seven small teeth. The first coxal plate is neither so produced nor so long as in the male.

Gnathopod 2, fifth joint somewhat shorter, but much wider than sixth; sixth with front and hind margins about parallel, palin transverse, defined by an evenly rounding curve at the base of which is a stout spine, palm minutely denticulate throughout; seventh joint exactly fitting palm, and armed on inside margin with four small teeth. The second coxal plate is slightly deeper than the first and deeper than any of the following. Length of female 6 mm .

Type locality-Magdalena Bay, Lower California, dredged in IO-I 5 fathoms inside northern point of entrance to bay, July 18, 1938. Holotype, male, U.S.N.M. No. 79375.

PHOTIDAE

PHOTIS SPINICARPA, new species

Figures 7, 8
Station 3. Magdalena Bay, Lower California, i6 specimens.
Male.-Head, lateral lobes moderately produced with front margin blunt and evenly rounding. Eye very small, round or slightly oval, black. Antenna I a little shorter than 2 ; flagellum consisting of about IO joints. Antenna 2, flagellum consisting of from 12 to 14 joints. Mandible, molar strong and prominent ; cutting edge toothed and very oblique; accessory plate simple, toothed; five spines in spine row, the two spines nearest molar being broadened and very much barbed
apically; palp with third joint over half the length of second, apically rounding and bearing groups of spines on inner and outer surfaces in addition to the inner marginal spines; second joint bearing a few scattered spines on inner margin. Maxilla i, imner plate reduced to a

Fig. 7.-Photis spinicarpa, new species. Male, a, gnathopod $\mathrm{I} ; b$, palm and seventh joint of gnathopod I greatly enlarged; c, gnathopod 2. Female, d, gnathopod I; e, palm and seventh joint of gnathopod 2, greatly enlatged.
small conical lobe without setae ; outer plate armed with io spine teeth; palp bearing on the obliquely truncate apex 6 spine teeth and 5 setae. Maxilla 2, outer plate wider and longer than inner ; inner plate bearing, besides the inner marginal spines, a row of 25 closely set plumose
setae which begins at the upper center of the plate and runs diagonally down to the lower inner edge. Maxillipeds, inner plate reaching to the middle of outer plate and bearing three teeth on upper margin;

Fig. 8.-Photis spinicarpa, new species. Male, a, peraeopod I ; b, peracopod 2 : c, peraeopod $3 ; d$, peraeopod $4 ; e$, seventh joint of peraeopod 4 greatly enlarged; f, peraeopod $5 ; g$, uropod 3 .
outer plate reaching nearly to the end of second joint of palp and armed on upper inner margin and rounding distal margin with eight spine teeth and three curved pectinate spines; third joint of palp
short and narrow; fourth joint rather small and bearing a prominent nail. Lower lip with lateral lobes rather small and slender ; inner lobes very large.

Gnathopod i, coxal plate somewhat produced forward, the lower front corner forming a slight lobe; second joint rather short and thick with lower front inner margin produced into a broadly rounding lobe ; fifth joint shorter than second and slightly longer than sixth and armed on upper proximal margin with a row of short stout spines; sixth joint narrowing distally, palm very oblique, concave, defined by a prominent angle on the inside of which is a stout spine, and crenulate throughout; seventh joint curved, bearing a row of fine teeth on inner margin and considerably overlapping palm.

Gnathopod 2, second joint short and stout and bearing at the lower front corner a narrow lobe which stands at a right angle to the joint ; third joint bearing a narrow, downward-pointing lobe on front margin ; fifth joint about two-thirds the length of sixth ; sixth joint broadly oval and only a little longer than wide, palm oblique, deeply convex, cremulate throughout, and forming a produced angle with the hind margin, the produced angle bearing a stout spine on inner surface; seventh joint curved, bearing a row of fine teeth on inner margin and somewhat overlapping palm.

Peraeopod I longer and stouter than 2 ; second joint as long as third and fourth together ; fourth joint considerably expanded and clothed with a dense armament of long plumose setae. Peraeopod 2 as shown in figure $8, b$. Peraeopod 3, coxal plate slightly deeper than that of peraeopod 2 ; limb short and curved up over back of animal; second joint very much expanded. Peraeopod 4, second joint not as greatly expanded as in 3 ; limb curved backward from the third joint ; seventh joint stout, armed on inner margin with a row of fine teeth becoming coarser as they approach the nail which bears several barbs on its outer base. Peraeopod 5 conspicuously longer than 4 ; second joint less expanded than that of 4 ; seventh joint long and prominent with armature similar to that of 4 .

Uropod i extending back a little farther than 2. Uropod 3 extending back as far as 2 or perhaps a little farther. Uropod 3, longer ramus about two-thirds the length of peduncle, second joint cylindrical and very short and armed with a long spine and several long setae; shorter ramus a little over one-third the length of the longer and bearing a very small apical spinule. Telson broadly triangular. Length of male 7 mm .

Female.-The female is very much like the male in general appearance. The gnathopods are not so strong and robust as in the male.

Palm of the first gnathopod very oblique, slightly concave, and defined by a low, evenly rounding angle bearing a prominent spine; seventh joint armed on inside margin with a row of fine teetl, and considerably overlapping palm. Gnathopod 2 , palm more concave than in gnathopod I , but not as deeply concave as that of male ; seventh joint armed on inner margin with strong serrations and somewhat overlapping palm. Length γ mm.

Type locality.-Magdalena Bay, Lower California, dredged in ro-I5 fathoms inside northern point of entrance to bay, July is, 1938. Holotype, male, U.S.N.M. No. Sooz8.

PHOTIS BREVIPES, new species

Figure 9
Station 3. Magdalena Bay, Lower California, 30 specimens.
Station 4. Magdalena Bay, Lower California, I specimen.
Male.-Head with lateral lobes very little produced. Eyes small, oval, black. Antenna I about equal in length to antenna 2, flagellum 6-jointed. Antenna 2, flagellum 6-jointed. Coxal plates I to 5 deeper than their segments; i and 2 not as deep as 3,4 , or 5 which are about equal in depth.

Gnathopods I and 2 short and stout. Gnathopod I, second joint bearing a slightly produced lower front lobe; fifth joint shorter but equal in width to sixth ; sixth joint, palm oblique and rather deeply excavate with a low protuberance near the seventh joint, defined by a prominent angle, submarginal to which is a prominent spine on the imner surface of the joint ; the palm is very finely crenulate throughout; seventh joint armed distally on the inner margin with three forward-pointing spine teeth and proximally with a row of very fine, closely set teeth. Gnathopod 2 a little longer and much stouter than I , second joint bearing a rather prominent lower front lobe ; fifth joint short and narrowly produced between fourth and sixth; sixth joint nearly as wide as long, palm nearly transverse, deeply incised, forming a prominent defining tooth, and bearing a triangular tooth near the seventh joint; seventh joint short and stout and bearing a rounding protuberance near the center of the inner margin.

Peraeopod i very little longer than 2 , second joint a little longer than third and fourth combined; fourth joint slightly expanded distally with lower front margin a little produced; fifth and sixth joints short and, combined, equal in length to the fourth. The third, fourth, and fifth joints bearing plumose setae on the hind margin; and the

Fig. 9.-Photis brevipes, new species. Male, a, gnathopod $1 ; b$, gnathopod 2 : c, peraeopod I; d, peraeopod $2 ; e$, peraeopod $3 ; f$, peraeopod $4 ; g$, peraeopod 5 ; h, uropod $\mathrm{I} ; i$, uropod 3 . Female, j, gnathopod I.
fourth joint bearing plumose setae on the front and lower margins, those of the lower margin being very long and extending much beyond the sixth joint. Peraeopod 2 in general much like peraeopod I, but does not bear so many plumose setae. Peraeopod 3 short and assuming the usual upward-pointing position characteristic of the genus Photis; the second joint is nearly circular, being as wide as long; the three following joints are very short and wide; the sixth joint is narrower, being twice as long as wide ; the seventh joint is short with the bent apex and two small outer teeth found in this genus. Peraeopods 4 and 5 are abont equal in length and are a little longer than 3 . Peraeopod 4 assumes much the same position as peraeopod 3 , though not pointing so sharply upward ; the seventh joint is much like that of 3 and when closed against the end of the sixth joint forms a decided hook. Peraeopod 5 has the appearance and structure normal to the great majority of the Gammaridea as shown in figure $9, g$.

Uropods I and 2 extending back about the same distance; uropod 3 extending back not quite so far as 2 . Outer ramus of uropod I bears three spines on upper margin, while the inner ramus bears only one; the outer edge of the peduncle bears six spines, and the inner edge bears only one terminal spinc. Outer ramus of uropod 2 bears two spines on upper margin and the inner ranus bears three; the peduncle bears two spines on outer edge and one terminal spine on inner edge. Telson normal and reaching to the middle of the peduncle of uropod 2. Length about 3 mm .

Female.-The female appears somewhat more robust than the male, but differs principally in the gnathopods. The palm of gnathopod I is very oblique and merges imperceptibly into the hind margin of the joint by an evenly rounding curve, but is defined by a stout spine ; the palm is armed throughout with very fine, sharp, closely set teeth; the seventh joint is much like that of the male, but the imer margin bears two teeth instead of the threc possessed by the male. Ginathopod 2 closely resembles gnathopod I of the male; the crenulate palm and the seventh joint like those of guathoporl I of the male, but the fifth joint is narrowly produced between the fourth and sixth as it is in gnathopod 2 of the male. Length about that of the male or a very little longer.

Type locality.-Magdalena Bay, Lower California, dredged in 10-15 fathoms inside northern point of entrance to bay, July 18, 1938. Holotype, male, U.S.N.M. No. 79360.

EURYSTHEUS TENUICORNIS (Holmes)

Figure io, d, e

Gammaropsis temicornis Holmes, 1904, Harriman Alaska Exped., p. 239, fig. 124.

Eurystheus tenuicomis Shoemaker, 193t, Proc. U.S. Nat. Mus., vol. 78, No. 286I, art. 18, p. 5, figs. 3. 4.

Station 3. Magdalena Bay, Lower California, I specimen.
Station 4. Magdalena Bay, Lower California, 2 specimens.
This species was described by Holmes from Puget Sound, Wash., from a single male specimen which did not possess fully developed characters. E. tenuicornis inhabits the entire west coast of the United States and Lower California and was taken by the Albatross in the Gulf of California.

EURYSTHEUS TENUICORNIS var. LOBATA, new variety

Figure 1o, $\alpha-c$
Station 3. Magdalena Bay, Lower California, 25 specimens.
Station 4. Magdalena Bay, Lower California, I specimen.
Male.-This variety is distingtished by the enlargement of the second joint of the first gnathopod and by its downward production into a broadly rounding lobe which is furnished with a dense brush of long forward-curving simple setae. The broadly triangular central dorsal tooth of the first turosome segment is produced upward and is curved forward toward the metasome. Length 8.5 mm .

The female does not differ materially from that of Eurystheus tomuicornis.

Type locality.-Magdalena Bay, Lower California, dredged in IO-I 5 fathoms inside northern point of entrance to bay, July I8, 1938. Holotype, male, U.S.N.MT. No. 79376.

There are specimens of this variety in the National Museum collection from the following localities: Albatross station 2835, off Lower California, $26^{\circ} 42^{\prime} 30^{\prime \prime}$ N., $113^{\circ} 34^{\prime} 15^{\prime \prime}$ W., May 4, 1888, 5.5 fathoms, 3 specimens; San Diego, Calif., io fathoms, collected by Henry Hemphill in 1882,8 specimens; La Jolla, Calif., from kelp holdfast washed up on beach after storm, March 4, I938, collected by Olga Hartman, 8 specimens ; Newport Bay, Calif., collected by G. E. MacGinitie from seaweed on rocks, December 29, 1932, many specimens : same locality, from among hydroids, etc., July I4, I935, 4 specimens.

Fig. io.-Eurystheus tenuicornis var. lobata, new variety. Male, a, gnathopod I ; b, gnathopod $2 ; c$, urosome. Eurysthcus tcnuicornis Holmes; d, gnathopod I; c, gnathopod 2.

EURYSTHEUS SPINOSUS, new species

Figure il

Station 3. Magdalena Bay, Lower California, if specimens.
Male.-Head with lateral lobes produced and rather sharply angular; eyes small, oval, and black. Antennae nearly equal in length, antemna 2 being perhaps a little the longer. Antenna I, third joint of peduncle equal in length to the first, but shorter than second, flagellum not as long as second and third peduncular joints combined, and composed of six joints ; accessory flagellum 3 -jointed. Antenna 2, fourth and fifth joints equal in length, flagellum a little longer than fifth peduncular joint, and composed of five joints.

Mandibles with molar well developed. Right mandible with accessory plate bifurcate and toothed ; three spines in spine row ; third joint of palp shorter than second and distally truncate. Maxilla 1 , imner plate triangular with acute apex and without setae; outer plate armed with 10 spine teeth; palp bearing distally 5 spine teeth and 4 setae. Maxilla 2, inner plate as wide as, but slightly shorter than, outer, distally broadly and evenly rounding, and bearing an oblique row of closely set setae near inner margin. Maxillipeds, inner plate not quite reaching the middle of outer plate, armed distally with three spine teeth, and bearing a spine tooth on inner margin near the upper angle; outer plate reaching a little beyond the middle of the second joint of the palp, inner margin armed with seven spine teeth, two of which are placed on the upper rounding angle; palp 4 -jointed, the last joint being small, obliquely truncate and bearing distally three spines. Lower lip with inner lobes very prominent, and lateral processes very acute.

Gnathopod I, second joint longer than fifth, fifth a little longer than sixth; sixth narrowing distally, palm defined by a slight angle and a spine, and bearing a low tooth near the linge of the seventh joint ; seventh joint longer than palm and armed on inner margin with a few minnte teeth. Gnathopod 2, fifth joint as wide as, but shorter than, sixth ; sixth joint with front and hind margins about parallel, palm oblique aud equal in length to hind margin, bearing two low teeth and defined by a small tooth.

Peracopods I and 2 alike, but i a little the longer. Peracopod 3, coxal plate very large and as deep as the fourth; second joint greatly developed, being as wide as long; fourth joint considerably expanded, hind margin convex and bearing a conspicuous row of stout spines. Peracopod 4 about as long as 3 but longer than peracopod 5. Peracopods 3 to 5 all strongly curved and extending up over the back.

Fig. in.-Eurystheus spinosus, new species. Male, a, front half of animal ; b, mandibular palp ; c, mandibular spine row; d, maxilla $1 ; c$, maxilla 2 ; f, maxilliped ; g, lower lip $; h$, gnathopod $\mathrm{I} ; i$, gnathopod $2 ; j$, peracopod $4 ; k$, peraeopod $5 ; l$, uropod $3 ; m$, telson. Female, n, gnathopod $1 ; o$, gnathopod i greatly enlarged ; p, gnathopod 2.

Metasome segments with lower posterior corners broadly rounding with the indication of a very slight and broad posterior angle in the second. Uropod 2 reaching a little farther back than I, but not as far as uropod 3. Uropods I and 2, inmer ramus longer than outer. Peduncle of uropod I produced distally into an upward-curved tooth. Uropod 2 is without the peduncular tooth. Telson reaching to about the middle of the peduncle of uropod 3, about as broad as long, narrowing distally, slightly emarginate above and bearing two setules on either side of the center of the emargination. Length of mature male about 3 mm .

Female.-The female differs from the male principally in the second gnathopod and the third peraeopod. The palm is very oblique, has a single palmar tooth near the hinge of the seventh joint, and is defined by a right angle and a spine. Peraeopod 3 is not so robust as in the male, the second joint is not so much expanded, the fourth joint is little expanded and lacks the characteristic row of spines of the male, and the fifth and sixth joints are proportionately longer. Length about 3 mm .

Type locality.-Magdalena Bay, Lower California, dredged in IO-I5 fathoms inside northern point of entrance to bay, July 18, i938. Holotype, male, U.S.N.M. No. 79377.

PODOCEROPSIS DUBIA, new species

Figure 12
Station 28. Chatham Bay, Cocos Island, 23 specinens.
Malc.-Head about as long as first two body segments ; lateral lobes produced but not acutely so; lower margin deeply incised for the insertion of antema 2 ; eye rather large and placed on the lateral lobe. Antema I shorter than 2, third peduncular joint longer than first and about two-thirds the length of the second; flagellum about as long as the second and third peduncular joints combined and composed of about 10 joints, the last 5 or 6 of which bear long, slender sensory organs. Antenna 2, third peduncular joint unnsually elongate, fourth very little shorter than fifth; flagellum very nearly as long as the peduncle and composed of about 14 joints.

Mouth parts very nearly as figured by Sars for Megamphopus cormutus (pl .200). Upper lip with lower margin evenly rounding. Mandible, molar prominent with the base near the insertion of the palp produced into a blunt rounding knob; accessory plate present on both right and left mandible; eight or nine spines in spine row; third joint of palp shorter than second. Maxilla I, imner plate rather

Fig. 12.-Podoceropsis dubia, new species. Male, a, front half of animal ; b, antenna I ; c, mandible; d, maxilla I; e, lower lip; f, peraeopod $4 ; q$, peraeopor $5 ; h$, uropod $1 ; i$, uropod $2 ; j$, uropod $3 ; k$, metasome, on larger scale than front half of animal ; l, telson. Female, m, gnathopod $1 ; n$, gnathopod 2.
small, evenly rounding distally and bearing a single seta; outer plate armed with io spine teeth; palp armed distally with 2 simple spines between which are 3 serrate spine teeth. Lower lip with lateral lobes rather short and angular. Coxal plates all rather shallow ; coxal plate i produced forward very slightly; coxal plate 2 the deepest, but little deeper than I ; coxal plates 3 and 4 successively shallower, 4 not as deep as 5 .

Gnathopod i, fifth joint as long as sixth, but wider; sixth rather narrow and converging distally, palm very long, without defining spine and not differentiated from short hind margin; seventh joint nearly as long as sixth and bearing a few setules on inner margin. Gnathopod 2 large and robust, fifth joint short, about one-third the length of sixth and produced behind into a small lobe; sixth joint strongly developed, front and hind margins about parallel, hind nargin produced distally into a low rounding lobe, palm not defined; seventh joint stout, strongly curved distally and about equal in length to the hind margin of the sixth joint. The seventh joint does not appear to close against the sixth joint, but normally remains gaping as shown in figure $12, a$.

Peraeopods I and 2 alike in structure, but I a little the larger; seventh joints rather short and glandular. Peracopod 3 shorter than 2 , second joint not much expanded. Peraeopod 4 longer than 3, but shorter than 5 ; second joint of 4 and 5 not much expanded, and their seventh joints nuthch longer than in the preceding peraeopods.

Metasome segments much as figured by Sars for M. cormutus (pl .200), all having their lower hind corners broadly rounding, and segment 3 being the longest. Uropod I projecting farther back than 2, which projects farther back than 3. Uropod I, pedincle produced distally below into an upward-curving tooth, outer ramus a little shorter than inner. Uropod 2 without the perluncular tooth, outer ramus shorter than inner. Telson wider than long, reaching to about one-third the distance along the rami of uropod 3, sides convex, each distal corner bearing two short spintiles and a long seta, and dorsal surface bearing a longitudinal depression. Length of male about 3 mm .

Femalc.-The female differs from the male only in the gnathopods. Gnathopod I is proportionately longer and slenderer ; the fifth and sixth joints are equal in length and are longer and not as wide as in the male. Gnathopod 2 is much like gnathopod 1 of the male, the slight differences being shown by the figures. The palms of both gnathopods are without defining spines and are not differentiated fron the hind margin of the joints. Length, female, 3 to 3.5 mm .

Type locality.-Chatham Bay, Cocos Island, taken in a bottom sample, mostly sand, August 3, 1938. Holotype, male, U.S.N.M. No. 79378.

Remarks.-This is an aberrant species and does not fit into any of the genera of the Photidae as characterized by Stebbing. It is nearest to Podoccropsis and Megamphopus. These two genera differ from each other in the relative length of the fifth and sixth joints of the second gnathopod of the male, being short in Podoccropsis and long in Megamplopus. In the present species the fifth joint is short in the male, but the sixth joint of gnathopod 2 in the female is not conspicuously wider than that of gnathopod I, a character of Podoccropsis given by Stebbing. Gnathopods I and 2 of the female are much like those figured by Sars for MIcgamphopus cormutus (pl. 200). The very small accessory flagellum is like that of Megamphopus. The second coval plate is the largest in both male and female, agrecing with Megamphopus. The mouth parts could be claimed by either Podoccropsis or Megamphopus. The mandible closely resembles that figured by Sars for M. cornutus (pl . 200). The inner plate of maxilla I is not obliquely truncate with the single seta at the apex of the somewhat produced corner as shown by Sars for M. cormutus (pl. 200) or Podoccropsis cxcavata (pl. 205), but is broadly and evenly rounding with the seta at the opposite corner from that shown by Sars.

In many characters Podoceropsis dubia bears a striking resemblance to Mcgamphopus longidactylus Chevreux (1925, p. 388), which is also an aberrant species and docs not conform to either Mcgamphopus or Podoccropsis. The present species differs from M. Iongidactwlus by having gnathopod 1 of the male much more robust, and the metacarpus of giathopod 2 much wider than the carpus.

NEOMEGAMPHOPUS, new genus

Body slender. Head with lateral lobes considerably projecting. Eyes well developed. Antennae I and 2 slender and I the shorter. Acessory flagellum very small, 2 -jointed. Mandibular palp stout, third joint shorter than second and distally truncate. Maxilla I, inner plate with I or 2 setae; outer plate with io spine teeth. Maxilla 2, outer plate broader and longer than inner, inner plate bearing oblique row of spinules. Maxillipeds, inner plate shorter than outer and bearing two teeth on truncate extremity; outer plate bearing a few teeth on inner edge and a few plumose spines and a few spine teeth on upper margin. Lower lip with very well-developed inner lobe. Gnathopod I in male the larger; fifth joint greatly developed with lower margin
produced forward into a tooth; sixth and seventh joints slender. Gnathopod 2 in male long and slender; sixth joint shorter than fifth and bearing the mere suggestion of a palm. Gnathopods 1 and 2 in female simple and much like gnathopod 2 of male. Side plate 4 not excavate behind. All peraeopods with second joint about equally expanded. Peraeopod 5 the longest. All uropods with outer ramus shorter than inner. Outer ramus of uropod 3 apparently with a very small indistinct second joint. Telson simple, tumid. Genotype, Ncomegamphopus roosevelti.

NEOMEGAMPHOPUS ROOSEVELTI, new species ${ }^{2}$

Figure i3
Station 3. Magdalena Bay, Lower California, many specimens.
Station 4. Magdalena Bay, Lower California, many specimens.
Station 5. Cape San Lucas, Lower California, 6 specimens.
Male.-Head about as long as the first two body segments; lateral lobes strongly produced and bearing the rather large oblique eye. Lower part of head cut far back for the insertion of antenna 2. Antenna I, second joint longest; third a little shorter than first; flagellum about as long as second and third joints combined and composed of about 10 joints; accessory flagellum shorter than first joint of primary flagellum and composed of I long and I very short joint. Antenna 2 with third, fourth, and fifth joints increasing consecutively in length; flagellum not as long as fourth and fifth joints combined and composed of about io joints.

Mandibles with prominent molar ; cutting edge rather narrow and toothed; accessory plate well developed and toothed ; six serrate spines in spine row; palp stout with spines on upper and lower margins of second joint, and many long spines on extremity of third joint. Maxilla 1 , inner plate obliquely truncate and bearing I or 2 simple setae ; outer plate armed with 10 serrate spine teeth; palp with first joint short, second joint broad and long, and armed distally with several jagged, serrate teeth and five setules. Maxilla 2, outer plate much broader than inner; inner plate with spinules along the entire inner edge and an oblique row near inner edge. Maxillipeds, inner plate with two teeth at inner corner of truncate distal margin, and an oblique row of plumose setae on inner surface; outer plate reaching to about two-thirds the length of the second palp joint, inner

[^1]margin armed with four spine teeth and the upper margin with two plumose spines and two slender spine teetl; second joint of palp slender and longer than the third and fourth combined, fourth joint

Fig. 13.-Neomegamphopus roosevelti, new species. Male, a, entire animal; b, accessory flagellum of antenna $1 ; c$, mandible; d, maxilla $\mathrm{I} ; e$, palp of left maxilla I ; f, end of palp of maxilla I , enlarged ; g, inner plate of left maxilla I ; h, maxilla $2 ; i$, maxilliped ; j, lower lip; k, telson and uropod $3 ; l$, end of gnathopod 2 , enlarged. Female, m, gnathopod $\mathrm{I} ; n$, end of gnathopod 2.
without nail, but bearing four spinules at apex. Lower lip with very large, well-developed lobes and rather short, wide side lobes.

Coxal plates i and 2 larger than the rest, 3,4 , and 5 of equal depth, and 6 and 7 shallowest. Gnathopod I large and strong; first joint
long and slender ; fifth joint with lower margin produced forward into a single pointed tooth above which is a narrow sinus; sixth joint much slenderer than fifth and bearing a prominent tooth near the proximal end; seventh joint curved and about two-thirds the length of the sixtll. Fifth and sixth joints very hirsute. Gnathopod 2 slender and much longer than the peraeopods; fifth joint about as wide and as long as the second; sixth joint narrower than, and about two-thirds the length of, the fifth, with a very inconspicuous palm; seventh joint slender, slightly curved, bearing very fine serrations on inner margin and a small spine and two setae near the apex.

Peraeopod I somewhat longer than 2 , the second joint much expanded. Peraeopod 3 shorter than 2. Peraeopod 4 longer than 3 . Metasome segments 1 to 3 with the lower posterior corner broadly rounding. Urosome segments 1 and 2 each bearing two dorsal setae. Uropods all reaching back about the same distance. Peduncle of uropod I produced distally to a strong tooth. Uropod 3, onter ramus about as long as the peduncle. Telson tumid, a little wider than long, slightly indented when viewed directly from above, and bearing a small spine and two setae at either distal corner. Length of fully developed males 4.5 to 5 mm . from front of head to end of uropod 3 . Females slightly smaller.

Female.- The female differs from the male only in the gnathopods and the first two coxal plates. The first two coxal plates are not larger or deeper than the three following. Gnathopods I and 2 are much like gnathopod 2 of the male, but the fifth joint is proportionately shorter. In gnathopod 2 the palm is even less conspicuous than in the male.

Type locality.-Magdalena Bay, Lower California, from filamentous green algae inside northern point of entrance to bay, I 5 fathoms, sandy, weedy bottom, July i8, i938. Holotype, male, U.S.N.M. No. 79298.

Remarks.-This genus cannot properly be assigned to any of the families as characterized by Stebbing in "Das Tierreich." It is a combination of the characters of the families Aoridae and Photidae. The large first gnathopod of the male closely resembles that of Microdeutopus, but the antennae, mouth parts, and head generally, are much more closely allied to those of Megamphopus. I am therefore naming this genus Neomegamphopus in order to call attention to its resemblance to the genus Megamplopus, and I am placing it in the family Photidae, to which I am of the opinion an emendation should be made in order to accommodate this genus having the first gnathopods larger than the second in the male.

CHEVALIA AVICULAE Walker

Chevalia aviculae Walker, 1904, Rep. Pearl Oyster Fisheries, Gulf of Manaar.
Suppl. Rep. 27, Amphipoda, p. 288, pl. 7, fig. 50; pl. 8, fig. 50.
Neophotis inaequalis Stout, 1913, Zool. Jahrb., Abt. Syst., vol. 34, p. 653.
Station 3. Magdalena Bay, Lower California, 5 specimens.
Chevalia aviculac was described from the Gulf of Manaar, between Ceylon and India in 1904. In 1909 Walker again recorded it from the Seychelles Islands. It was recorded from South Africa by Barnard in 1916. In i92I I recorded it from Barbados, West Indies. Barnard recorded it in 1937 from the Red Sea and the south coast of Arabia.

Prof. A. S. Pearse in 1912 described the species Chevalia mervicana from the Gulf of Mexico, but this is undoubtedly a synonym of the earlier species, many of the characters of which appear to be rather variable.

In i9I3 Vinnie Ream Stout described a new genus and species of amphipod, Neophotis inaequalis, from Laguna Beach, Orange County, Calif., but gave no figures. There are no specimens of her species extant, but her description leaves no doubt that she was dealing with Chevalia aviculae Walker which occurs in southern California.

The present record from Magdalena Bay is the first definite one for the west coast of America, as Miss Stout's species had not heretofore been recognized as a synonym of Walker's C. aviculac. The National Museum also possesses specimens of Chevalia aviculac from kelp holdfasts pulled up off South Coronado Island, northern Lower California, and from Corona Del Mar, Orange County, Calif.

AMPITHOIDAE

AMPITHOE PLUMULOSA Shoemaker

Ampithoc plumulosa Shoemaker, 1938, Journ. Washington Acad. Sci., vol. 28, No. i, p. 16, fig. i.

Station 3. Magdalena Bay, Lower California, 15 specimens.
Station 4. Magdalena Bay, Lower California, 1 specimen.
Station 5. Cape San Lucas, Lower California, 4 specimens.
Station 9. Clipperton Island (shore collecting), I specimen.
This species was described from a tide pool at La Jolla, southern California, in 1938, and its range was given as extending from Ecuador northward to Strait of Georgia, British Columbia. Clipperton Island, which lies between 600 and 700 miles off the west coast of Mexico, is a new locality for the species.

AMPITHOE RAMONDI (Audouin)

Amphithoc ramondi Audourn, 1826, Descr. Égypte, Nat. Hist., vol. 1, pt. 4, p. 93 ; Savigny, Crustace et Arachnides de l'Egypte, pl. ir, fig. $6 \not \subset$.
Ampithoe ramondi Schellenberg, 1928, Trans. Zool. Soc. London, vol. 22, pt. 5, p. 665.

Ampithoc simulans Alderman, 1936, Univ. California Publ. Zool., vol. 41, No. 7, p. 68, figs. 44-47.

Station 3. Magdalena Bay, Lower California, i6 specimens.
Station 30. Old Providence Island, Caribbean Sea, 2 specimens.
This widely distributed species varies considerably in the detail of several of its characters. The frontal lobes of the second and third joints of the first and second gnathopods and the palm of the second gnathopod of the male are particularly subject to variation. Ampithoe vaillanti (Lucas) described from the Mediterranean is now also considered a synonym of A. ramondi (Audouin).

This species is cosmopolitan in the tropical and subtropical seas. It was described from the Mediterranean and has since been recorded from the Suez Canal ; South Arabian coast ; Gulf of Manaar, Indian Ocean ; East Indies ; North and South Pacific ; Pacific coast of North America ; tropical Atlantic ; and South Africa.

ISCHYROCERIDAE ${ }^{3}$

JASSA FALCATA (Montagu)

Cancer (Gammarus) falcatıs Montagu, 1808, Trans. Limn. Soc., vol. 9, p. 100, pl. 5, figs. 1-2.
Podocerus falcatus Sars, 1895, Crustacea of Norway. Amphipoda, vol. i, p. 594, pl. 212.
Jassa falcata Sexton, i9ir, Journ. Marine Biol. Assoc., vol. 9, No. 2, p. 212.
Station 3. Magdalena Bay, Lower California, 3 specimens.
Jassa falcata was describer from the coast of England over 100 years ago, and since then it has been recorded from tropical and temperate waters around the globe. As the male appears to vary considerably at different stages of its development, the animal has been described under several different names by different authors (Sexton, 1911, p. 212). It was recorded by Chilton (1921, p. 89) from Juan Fernandez, but the present record is the first for the west coast of North America.

[^2]
PARAJASSA ANGULARIS, new species

Figures 14, 15
Station 3. Magdalena Bay, Lower California, 3 specimens.
Male.-Head with side lobes considerably produced. Eye oval and black. Antenna I, first joint of peduncle slightly shorter than third, which is a little shorter than second; flagellum about half as long as peduncle and 6 -jointed, each joint bearing a slender sense organ. Antenna 2 stouter but subequal in length to antenna I, fourth joint of peduncle slightly shorter than fifth; flagellum about equal in length to fourth joint and consisting of one long and three shorter joints.
Epistome produced into a long sharp point. Mandible with molar rather prominent; only two toothed or serrate spines in spine row; palp rather long, third joint shorter than second. Maxilla I, inner plate small, narrowly angular and without setae; outer plate armed with nine spine teeth; palp very large, armed distally with six serrate spine teeth and six or seven setae. Maxilla 2, outer plate longer and wider than inner. Maxillipeds, inner plate nearly as long as outer, armed distally with three serrate spine teeth, and bearing an inwardpointing spine on the outer surface near the inner margin; outer plate reaching to about the middle of the second joint of palp, armed on the inner margin with five simple spine teeth and a few setae; palp slender, third joint much shorter than second, fourth joint shorter than third and armed distally with four curved spines. Lower lip with inner lobes very large.

Gnathopod i, coxal plate somewhat produced forward with sides converging distally ; second joint longer than either fifth or sixth; fifth joint slightly shorter than sixth; sixth joint about twice as long as wide, palm slightly oblique, very finely serrate and defined by a wellmarked angle, hind margin of joint bearing three notched spines and two groups of slender spines ; seventh joint considerably overlapping palm, inner margin finely serrate, and bearing a prominent tooth near the apex. Gnathopod 2 large and strong; coxal plate longer than deep; second joint greatly expanded; third joint bearing a narrow front lobe; fifth joint bearing a broad posterior lobe; sixth joint very robust, about a third longer than wide with a short tooth near the middle of the hind margin, palm transverse, very short and defined by a right angle; seventh joint stout, closing partly on the inside surface of the sixth joint with the apex resting in the angle made by the marginal tooth and the hind margin of sixth joint, inner edge of seventh joint armed with about 12 very short blunt spines.

Fin. I4.-P'arajassa anyularis, new species. Male, a, front half of animal ; b, maxilla $1 ; c$, maxilla 2 ; d, maxillipeds; c, imner plate of maxilliped showing the three spine teeth; f. lower lip; g, peraeopod $3 ; h$, peraeopod $4 ; i$, peracopod 5 ; i. second and third metasome segments. Female, k, gnathopod 2.

Peracopods 1 and 2 subequal in length and very much alike in structure ; second joint considerably expanded ; fourth joint expanded and produced anteriorly into a downward-pointing lobe which reaches to the lower margin of the fifth joint. P'eraeopocl 3 , coval plate not quite as deep as those of peraeopods i and 2. Peracopods 3 to 5 in-

e
a

Fig. i5.-Parajassa angularis, new species. Male, a, gnathopod i; b, mandible: c, uropod $2 ; d$, uropod 3 and telson.
creasing in length consecutively and proportioned as shown in figure 14, g-i. Metasome segments with lower hind corners broadly rounding. Uropod 3 not extending back quite as far as 2. Uropod 2, outer ramus viewed from above curving outward, the distal quarter of ramus downward-pointing, transparent and laving the appearance
of a second joint at the base of which are two small spines. Uropod 3, outer ramus shorter than inner and bearing apically three minute hooked spines. Telson triangular viewed from above, bearing two hooks near the apex and several plumose setules on upper surface. Length, from front of head to end of uropod $3,4 \mathrm{~mm}$.

Female.-Very much like the male, differing principally in gnathopod 2, which is much the same shape as in the male, but proportionally smaller. Length of the female is a little less than that of the male.

Type locality'-Magdalena Bay, Lower California, dredged in IO-I 5 fathoms inside northern point of entrance to bay, July 18, 1938. Holotype, male, U.S.N.M. No. 79379.

MICROJASSA MACROCOXA, new species

Figures 16, i7
Station 3. Magdalena Bay, Lower California, 30 specimens.
Station 4. Magdalena Bay, Lower California, I specimen.
Male.-Head cut far back below for the insertion of the base of antenna 2 ; side lobes produced and angular. Eye rather large, colorless, but facets plainly visible. Antenna I short, second joint longest ; flagellum 2-jointed, first joint very long ; accessory flagellum I -jointed. Antenna 2 more than twice as long as antenna I, fifth joint longest ; flagellum 2 -jointed, first joint very long.

Right mandible, accessory plate toothed; two spines in spine row; molar well developed, with a little denticulate plate in a recess of the forward margin and a long seta attached to the inner margin; palp well developed, second joint longest; third joint narrower than second and distally truncate. Maxilla I , inner plate undiscoverable or absent; outer plate bearing seven spine teeth; second palp joint long and armed distally with five spine teeth and a very oblique row of four setae. Maxilla 2, inner plate shorter and narrower than outer. Maxillipeds, inner plate about half the length of the outer, armed on apical margin with one spine tooth and on the under surface with one stout tooth which points toward the inner margin; outer plate with inner crenate margin bearing four spine teeth, apical nlargin bearing one curved spine tooth and three plumose or pectinate spines; third joint of palp bearing an oblique row of spines; fourth joint with long slender pectinate nail. Lower lip much as figured by Sars (pl. 212, l) for Jassa falcata, but inner lobes and side lobes very well developed.

Gnathopod I, coxal plate not much deeper than its body segment, not as long as deep; second joint as long as the fifth and sixth joints

Fig. 16.-Microjassa macrocoxa, new species. Male, a, front half of animal ; b, gnathopod $\mathrm{I} ; c$, peraeopod I; d, peraeopod 2 ; e, peraeopod 3 ; f, peraeopod 4; g, peraeopod $5 ; h$, metasome ; i, uropod 3 , inside view of right. Female, j, gnathopod I; k, gnathopod 2.

Fig. 17.-Microjassa macrocoxa, new species. Male, a, gnathopod i, greatly enlarged ; b, gnathopod $2 ; c$, accessory flagellum ; d, mandible; c, maxilla I; f, maxilla 2 ; (!, maxilliped; h, uropod $\mathrm{I} ; i$, uropod $2 ; j$, telson.
combined; sixth joint wider than fifth, palm oblique and passing into hind margin by a broadly rounding curve, but defined by two stont pectinate spines, edge of palm crenulate and serrulate; seventh joint with inner margin serrulate. Gnathopod 2, coxal plate strongly developed, not as long as deep, narrowing distally to the evenly rounding lower margin ; second joint with proximal end very narrow, then becoming strong and widening abruptly, leaving the front margin deeply concave for the reception of the fifth and sixth joints when the limb is folded against the body; fifth joint very short, sixth joint powerful with hind margin produced distally into a long, strong tooth, palm greatly excavate with a short central tooth and a more prominent one near the distal hinge; seventh joint stout and bearing a minute nail, inner margin bearing a very low tooth preceded by a shallow indentation.

Peracopod I rather short and stout, but a little longer than 2 ; coxal plate deeper than the preceding or following, twice as deep as long and a little wider distally. Peraeopod 2 much like I, coxal plate about as deep as long and very deeply excavate behind. Peraeopod 3 shorter than 2. Peraeopods 4 and 5 about equal in length and longer than 3.

Metasome, segment 2 the deepest, the lower hind corner of segments 2 and 3 slightly produced. Uropods 1 and 2 slender; uropod 2 projecting a little farther back than 1 , and uropod 3 perhaps a little farther back than 2. Outer ramus of uropod i very slightly shorter than inner; outer ramus of uropod 2 much shorter than inner. Uropod 3, peduncle twice as long as onter ramus which is longer than the inner ; outer ramus bears very minute serrulations on upper margin near the apex. Telson reaches to about the center of the peduncle of uropod 3 , about as wide as long with sides converging to the narrow, pointed apex. Length of male about 3.5 mm . ; female a little smaller.

Female.-Antennae are shorter than in the male. Coxal plates are not quite as deep as in male. Gnathopod i much like that of male, but palm more oblique. Gnathopod 2 much like gnathopod I of male, but the palm more sinuous, and the coxal plate with front and hind margins about parallel.

Type locality.-Magdalena Bay, Lower California, dredged in IO-I 5 fathoms inside northern point of entrance to bay, July i8, 1938. Holotype, male, U.S.N.M. No. 79369.

COROPHIIDAE

ERICTHONIUS BRASILIENSIS (Dana)

Pyctilus brasiliensis Dana, 1853 and i855, U.S. Explor. Exped., vol. 14, pt. 2, Amphipoda, p. 976 , pl. 67, fig. 5, $a-h$.
Ericthonius abditus Sars, 1895, Crustacea of Norway. Amphipoda, vol. i, p. 602 , pl. 215 .

Ericthonius brasilicnsis Stebbing, 1906. Amphipoda. I. Gammaridea, Das Tierreich, p. 67 I.

Station 3, Magdalena Bay, Lower California, many specimens.
This is a cosmopolitan species, inhabiting the warm and temperate seas of the globe. It was recorded by Stimpson from San Francisco Bay as Ericthonius rapax in 1857 . The species is rather variable and has been described by different authors under different names. E. mina. x^{*}, described by Smith from New England, and E. disjunctus, described by Stout from Laguna Beach, Calif., are synonyms of E. brasiliensis (Dana).

CERAPUS TUBULARIS Say

Cerapus tubularis Say, 18iz, Journ. Acad. Nat. Sci., Philadelphia, vol. i, No. 4, pp. 50, 95, pl. 4, figs. 7-11.
Cerapus tubularis Kunkel, igi8, State of Comecticut State Geol. and Nat. Hist. Surv., Bull. 26, p. 160, fig. 48.

Station 3. Magdalena Bay, Lower California, 2 specimens.
Station 5. Cape San Lucas, Lower California, 2 specimens.
Cerapus tubularis was described by Say from Egg Harbor, N. J., and appears to be fairly common on the east coast of the United States. The animal constructs a slender, dark-colored tube, open at both ends, in which it lives and which it carries about. Prof. S. I. Smith (Trans. Connecticut Acad., vol. 4, pp. 269-277) has given a description and observations on the habits of this species. It has not heretofore been recorded from the west coast of America.

PODOCERIDAE

PODOCERUS CRISTATUS (Thomson)

Cyrtophiun cristatum G. M. Thomson, 1879, Ann. Mag. Nat. Hist., ser. 5, vol. 4, No. 23, p. 33I, pl. i6, figs. 9-15.
Cyrtophium dentatum Haswell, 1879, Proc. Limn. Soc. New South Wales, vol. 4, p. 342, pl. 22, fig. 5.
Podocerus cristatus Chilton, 1926, Trans. New Zealand Inst., vol. 56, pp. 513515, fig. 2.
Station 3. Magdalena Bay, Lower California, 12 specimens.
Station 4. Magdalena Bay, Lower California, I specimen.

This species was described from New Zealand in 1879 and has since been recorded from Australia, South Africa, and West Africa. It is now recorded for the first time from the west coast of North America.

CYAMIDEA

CAPRELLIDAE

CAPRELLA SCAURA Templeton

Caprella scaura Templeton, 1836, Trans. Ent. Soc. London, vol. i, pt. 3. p. 191, pl. 20, fig. 6.
Caprella scaura Barnard, 1925, Amn. South African Mus., vol. 20, No. 8, p. 37 I.
Station 3. Magdalena Bay, Lower California, many specimens.
Station 4. Magdalena Bay, Lower California, many specimens.
Station 5. Cape San Lucas, Lower California, 4 specimens.
This variable species was described from Mauritius and has since been recorded from the east coast of Asia, west coast of North and South America, east coast of South America, West Indies, east coast of North America, and South Africa.

HYPERIIDEA
 HYPERIIDAE
 HYPERIA BENGALENSIS (Giles)

Lestrigonus bengalensis Giles, 1887, Journ. Asiatic Soc. Bengal, vol. 56, pt. 2, p. 224.

Hyperia bengalensis Walker, 1904, Pearl Oyster Fisheries, Gulf of Manaar, Suppl. Rep. 17, Amphipoda, p. 235.
Hyperia bengalensis Pirlot, 1939, Résult. Camp. Sci., fasc. 102, p. 35.
Station 22. Off Gardner Bay, Hood Island, Galápagos Islands, I specimen.
As shown by Pirlot's synonymy, this small species has been described under many different names from widely separated localities. It has been recorded from the Mediterranean, Indian Ocean, East Indies, New Zealand, and North and South Atlantic. The present record is the first for the Galápagos Islands.

LITERATURE CITED

Alderman, A. L.
1936. Some new and little known amphipods of California. Univ. California Publ. Zool., vol. 41, No. 7, pp. 53-74, text figs. I-5I.
Audouin, V.
1826. Explication sommaire des planches de crustacés de Egypt et de la Syrie, Publiées par Jules-Cesar Savigny, Membre de l'Institut. Description de la Egypte, Hist. Nat., vol. I, pt. 4, pp. 77-98.

Barnard, K. II.
1916. Contribution to the crustacean fauna of South Africa. Amn. South African MLus., vol. 15. pt. 3. pp. 105-302, pls. 26-28.
1925. Contribution to the crustacean fanna of South Africa. Ann. South African Mus., vol. 20, No. 8. Further additions to the list of Amphipoda, pp. 3r9-380, pl. 3.4.
1937. Amphipoda. The John Murray Expedition, 1933-34. British Mus. Nat. Hist., Sci. Reports, vol. 4, No. 6, pp. 131-20I, figs. I-2I.
Cifevreux, Ed.
1901. Mission scientifique de M. Ch. Alluaud aux Iles Séchelles, Mars, Avril, Mai 1892. Crustacés Amphipodes. Menn. Soc. Zool. France, vol. If, pp. 388-438, text figs. I-65.
1907 [1908]. Amphipodes recuellis dans les possesions Françaises de l'Oceanie par M. le Dr. Seurat, Directeur du Laboratoire de Recherches Biologiques de Rikitea (Iles Gambier) 1902-1904. Mem. Soc. Zool. France, vol. 20, No. 4, pp. 470-527, text figs. 1-35. Paru le 6 Juin, 1908.
1925. Voyage de la Goélctte Mclita aux Canaries et aut Sénégal 1889-1890. Amphipodes. I. Gammariens. Bull. Soc. Zool. France, vol. 50, pp. 365-398, figs. 13-35.
Chilton, Charles.
1909. The Crustacea of the subantarctic islands of New Zealand. Subantarctic Islands of New Zealand, Wellington, New Zealand, Article 26, pp. 601-671, figs. 1-19.
1921. The natural history of Juan Fernandez and Easter Island, vol. 3, pp. 8i-92, figs. i-4. Upsala.
1926. New Zealand Amphipoda. No. 6. Trans. New Zealand Inst., vol. 56, pp. 512-518, figs. 1-4.
Costa, A.
1853. Relazione stulla memoria del Dottor Achille Costa, di Ricerche su' Corstacei Amfipodi del Regno di Napoli. Rend. Soc. Reale Barbonica, Acad. Sci., n. s., vol. 2, pp. 166-1ך8.
Dana, J. D.
1852, 53 [1853]; 1855. United States Exploring Expedition during the years 1838-42, under the command of Charles Wilkes, LU.S.N., vol. I4, pt. 2, Amphipoda, pp. 805-1018, pls. 54-69.
Giles, G. M.
1887. On six new amphipods from the Bay of Bengal. Journ. Asiatic Soc. Bengal, vol. 56, pt. 2, pp. 212-229, pls. 6, 7 .
Grube, A. E.
1864. Beschreibungen einiger Amphipoden der istrischen Fauna. Arch. Naturg., Jahrg. 30, vol. 1, pp. 195-21 3, pl. 5.
Hasivell, Wm. A.
1879. On some additional new genera and species of amphipodous crustaceans. Proc. Linn. Soc. New South Wales, vol. 4, pp. 319-356, pls. 18-24.
Holmes, S. J.
1904. Amphipod crustaceans of the Expedition. Harriman Alaska Exped. with the cooperation of Washington Acad. Sci., pp. 233-246, figs. 118-128. Doubleday, Page \& Co., New York.
1905. The Amphipoda of sonthern New England. Bull. Bur. Fish. for 1904, vol. 24, pp. 457-529, pls. 1-12, text figs.
1908. The Amphipoda collected by the U. S. Bureau of Fisheries Steamer Albatross off the West Coast of North America, in 1903 and 1904, with descriptions of a new family and several new genera and species. Proc. U. S. Nat. Mus., vol. 35, No. 1654, pp. 489-543, 46 figs.
Kunkel, B. W.
1918. The Arthrostraca of Connecticut. State of Comnecticut State Geol. and Nat. Hist. Surv., Bull. 26, pp. 1-261, text figs. I-S4.
Montagu, G.
1808. Description of several marine animals found on the south coast of Devonshire. Trans. Linn. Soc., vol. 9, pp. 8i-IIf, pls. z-8.
Mëller, Fritz.
1865. Description of a new genus of amphipod Crustacea. Amm. Mag. Nat. Hist., ser. 3, vol. 15. pp. 276-277, pl. 10.
Pearse, A. S.
1912. Notes on certain amphipods from the Gulf of Mexico, with descriptions of new genera and species. Proc. U. S. Nat. Mus., vol. 43, No. 1936, pp. 369-379, text figs. i-8.
Pirlot, Jean M.
1939. Sur des amphipodes hypérides provenant des croisières du Prince Albert I ${ }^{\text {er }}$ de Monaco. Résultats des Campagnes Scientifiques Accomplies sur son yacht par Albert ${ }^{\text {er }}$, fasc. 102, pp. 1-63, pls. I, 2.
Sars, G. O.
1895. Account of the Crustacea of Norway. Amphipoda, vol. I, pp. i-viii, 1-711, pls. 1-240, 1-\III.
Say, Thomas.
1817. On a new genus of Crustacea, and the species on which it is established. Journ. Acad. Nat. Sci., Philadelphia, vol. i, No. 4, pp. 49-52, pl. 4.
Schellenberg, A.
1928. Report on the Amphipoda collected by the Cambridge Expedition to the Suez Canal, 1924. Trans. Zool. Soc. London, vol. 22, pt. 5. pp. 633-692, text figs. 198-209.
193I. Gammariden und Caprelliden des Mageliangebietes, Südgeorgiens und der Westantarktis. Further Zoological Results of the Swedish Antarctic Exped. 1901-1g03, vol. 2, No. 6, pp. 1-290, text figs. 1-1 36, pl. г.
1938. Litorale Amphipoden des Tropischen Pazifiks. Kungl. Svenska Vetensk. Akad. Hlandl., Tredje ser., vol. 16, No. 6, pp. 1-105, text figs. I-48.
Sexton, E. IV.
191r. The Amphipoda collected by the Huxtcy from the north side of the Bay of Biscay in August, 1906. Journ. Marine Biol. Assoc., vol. 9, No. 2, pp. 199-227, pl. 3.
Shoemaker, C. R.
1920. Report of the Canadian Arctic Expedition 1913-18, vol. 7 : Crustacea, pt. E: Amphipods, pp. 1-30, figs. I-6.
1921. Report on the amphipods of the Barbados-Antigua Expedition of 1918. Univ. Iowa Studies. Studies in Nat. Hist., ser. I, No. 45, pp. 19-102.
1925. The Amphipoda collected by the United States Fisheries Steamer Albatross in 191I, chiefly in the Gulf of California. Bull. Amer. Mus. Nat. Hist., vol. 52, art. 2, pp. 2I-6I, figs. I-26.
1926. Amphipods of the family Bateidae in the collection of the United States National Museum. Proc. U. S. Nat. Mus., vol. 68, No. 2626, art. 25, pp. 1-26, figs. 1-16.
1931. A new species of amphipod crustacean (Acanthonotozomatidae) from California, and notes on Eurystheus tenuicornis. Proc. U. S. Nat. Mus., vol. 78, No. 286I, art. 18, pp. I-8, figs. i-4.
1933. Amphipoda from Florida and the West Indies. Amer. Mus. Nov., No. 598, pp. 1-24, figs. i-i3.
1938. Three new species of the amphipod genus Ampithoc from the west coast of America. Journ. Washington Acad. Sci., vol. 28, No. 1, pp. 15-25, figs. I-4.
Smitif, S. I.
1873. In A. E. Verrill, Report upon the invertebrate animals of Vineyard Sound and adjacent waters. Rep. Comm. Fish., U. S. Fish Comm. 187 I and 1872, pp. 295-777, pls. 1-38.
Stebbing, T. R. R.
1906. Amphipoda. I. Gammaridea. Das Tierreich, pp. i-xxxix, i-806, text figs. I-127. Berlin.
Stephensen, K.
1935. Terrestrial Talitridae from the Marquesas. B. P. Bishop Mus., Bull. 142, art. 3, pp. 19-34, text figs. I-10.
Stimpson, Wm.
1857. On some California Crustacea. Proc. California Acad. Nat. Sci., vol. i, pp. 87-90.
Stout, Vinnie Ream.
1913. Studies in Laguna Amphipoda. II. Zool. Jahrb., Abt. Syst., vol. 34, pp. 633-659, text figs. a-c.
Templeton, R.
1836. Description of some undescribed exotic Crustacea. Trans. Ent. Soc. London, vol. i, pt. 3, pp. 185-194.
Thomson, G. M.
1879. Additions to the amphipodous Crustacea of New Zealand. Ann. Mag. Nat. Hist., ser. 5, vol. 4, No. 23, pp. 329-333, pl. 16.
Walker, A. O.
1904. Amphipoda. Report to the Govermment of Ceylon on the pearl oyster fisheries of the Gulf of Manaar. Suppl. Rep. 17, Amphipoda, pp. 231-300, pls. i-8.
1909. Amphipoda Gammaridea from the Indian Ocean, British East Africa, and the Red Sea. Trans. Linn. Soc. London, vol. 12, pt. 4, pp. 323344 , pls. 42, 43.
Wrzesniowski, A.
1879. Vorläufige Mittheilungen über einige Amphipoden. Zool. Anz., vol. 2, pp. 190-202.

[^0]: ${ }^{1}$ Named in honor of Dr. Waldo L. Schmitt, the naturalist to the Presidential Cruise.

[^1]: ${ }^{2}$ I take great pleasure in naming this species for the Hon. Franklin D. Roosevelt, President of the United States of America, in appreciation of his interest in the biological collections of the U. S. National Museum.

[^2]: ${ }^{3}$ I am using the family name Ischyroceridae created by Stebbing in 1899 in place of the name Jassidae, preoccupied by Fieber in 1866 for a family of Hemiptera (Shoemaker 1920, p. 22).

